Site-specific photocleavage of hen egg lysozyme and bovine serum albumin (BSA) by N-(L-phenylalanine)-4(1-pyrene)butyramide (Py-Phe) is investigated in detail with respect to its efficiency, dependence on oxygen, and radical quenchers. Binding of Py-Phe to BSA follows a biphasic process with two binding sites per protein. The photocleavage was achieved upon irradiating a mixture of protein, Py-Phe and Co(III)hexammine (CoHA) at 344 nm. No protein cleavage was observed in the absence of Py-Phe, or CoHA, or light. Photocleavage of BSA was inhibited by degassing or by the addition of radical quenchers such as ethanol. In addition, the photoreaction was quenched by electron donors such as ethanolamine. This result was corroborated by the flash photolysis studies where the cation radical derived from the probe is also quenched by ethanolamine with an equivalent rate constant. Quenching of the singlet excited state of Py-Phe by CoHA followed by the reaction of the resulting pyrenyl cation radical with the protein backbone is the suggested mechanism of protein cleavage. The origin of the specificity of photocleavage is discussed and specificity is valuable in targeting desired sites of proteins with small molecules.
CITATION STYLE
Kumar, C. V., Buranaprapuk, A., & Thota, J. (2002). Protein scissors: Photocleavage of proteins at specific locations. In Proceedings of the Indian Academy of Sciences: Chemical Sciences (Vol. 114, pp. 579–592). Indian Academy of Sciences. https://doi.org/10.1007/BF02708852
Mendeley helps you to discover research relevant for your work.