Mammalian phospholipase D (PLD) plays a key role in several signal transduction pathways and is involved in many diverse functions. To elucidate the complex molecular regulation of PLD, we investigated PLD-binding proteins obtained from rat brain extract. Here we report that a 43-kDa protein in the rat brain, β-actin, acts as a major PLD2 direct-binding protein as revealed by peptide mass fingerprinting in combination with matrix-assisted laser desorption ionization/time-of-flight mass spectrometry. We also determined that the region between amino acids 613 and 723 of PLD2 is required for the direct binding of β-actin, using bacterially expressed glutathione S-transferase fusion proteins of PLD2 fragments. Intriguingly, purified β-actin potently inhibited both phosphatidylinositol-4,5-bisphosphate- and oleate-dependent PLD2 activities in a concentration-dependent manner (IC 50 = 5 nM). In a previous paper, we reported that α-actinin inhibited PLD2 activity in an interaction-dependent and an ADP-ribosylation factor 1 (ARF1)-reversible manner (Park, J. B., Kim, J. H., Kim, Y., Ha, S. H., Kim, J. H., Yoo, J.-S., Du, G., Frohman, M. A., Suh, P.-G., and Ryu, S. H. (2000) J. Biol. Chem. 275, 21295-21301). In vitro binding analyses showed that β-actin could displace α-actinin binding to PLD2, demonstrating independent interaction between cytoskeletal proteins and PLD2. Furthermore, ARF1 could steer the PLD2 activity in a positive direction regardless of the inhibitory effect of β-actin on PLD2. We also observed that β-actin regulates PLD1 and PLD2 with similar binding and inhibitory potencies. Immunocytochemical and co-immunoprecipitation studies demonstrated the in vivo interaction between the two PLD isozymes and actin in cells. Taken together, these results suggest that the regulation of PLD by cytoskeletal proteins, β-actin and α-actinin, and ARF1 may play an important role in cytoskeleton-related PLD functions.
CITATION STYLE
Lee, S., Park, J. B., Kim, J. H., Kim, Y., Kim, J. H., Shin, K. J., … Ryu, S. H. (2001). Actin Directly Interacts with Phospholipase D, Inhibiting Its Activity. Journal of Biological Chemistry, 276(30), 28252–28260. https://doi.org/10.1074/jbc.M008521200
Mendeley helps you to discover research relevant for your work.