Liver atau hati adalah organ yang perannya sangat vital dalam tubuh manusia. Penyakit liver sering dianggap sebagai silent killer (pembunuh diam-diam) karena adanya kemungkinan tidak timbul gejala. Permasalahan yang terjadi adalah sulitnya mengenali penyakit liver sejak dini., bahkan saat penyakit ini sudah menyebar pun masih sulit untuk dideteksi. Padahal penderita perlu mengetahui adanya gejala penyakit liver sejak dini agar dapat segera melakukan pengobatan. Adanya diagnosa penyakit liver sejak dini mampu meningkatkan kelangsungan hidup pasien. Pada penelitian ini diterapkan metode untuk klasifikasi penyakit liver menggunakan machine learning dan dibandingkan hasilnya dengan metode klasik. Data yang digunakan adalah Indian liver patients dataset (ILPD)yang diambil dari UCI machine learning. Terdapat beberapa tahapan preprocessing yang dilakukan, antara lain pengecekan missing value, imputasi, feature selection, dan resampling untuk mengatasi data imbalance. Setelah dilakukan preprocessing, selanjutnya dilakukan analisis menggunakan metode regresi logistik, decision tree, naïvebayes, k-nearest neighbor, dan support vector machine. Berdasarkan nilai akurasi dan presisi, maka metode SVM memberikan hasil yang terbaik, tapi berdasarkan recall maka metode K-Nearest Neighbor memberikan hasil terbaik. Walaupun SVM memberikan hasil nilai akurasi dan presisi tertinggi tetapi terdapat ketimpangan yang besar antara nilai presisi dan recall yang dihasilkan, jika dibandingkan selisih nilai akurasi dan recall dari metode K-Nearest Neighbor.
CITATION STYLE
Pusporani, E., Qomariyah, S., & Irhamah, I. (2019). Klasifikasi Pasien Penderita Penyakit Liver dengan Pendekatan Machine Learning. Inferensi, 2(1), 25. https://doi.org/10.12962/j27213862.v2i1.6810
Mendeley helps you to discover research relevant for your work.