The effects of thermodynamic stability on wind properties in different low-mass black hole binary states

38Citations
Citations of this article
14Readers
Mendeley users who have this article in their library.

This article is free to access.

Abstract

We present a systematic theory-motivated study of the thermodynamic stability condition as an explanation for the observed accretion disc wind signatures in different states of low-mass black hole binaries (BHB). The variability in observed ions is conventionally explained either by variations in the driving mechanisms or by the changes in the ionizing flux or due to density effects, whilst thermodynamic stability considerations have been largely ignored. It would appear that the observability of particular ions in different BHB states can be accounted for through simple thermodynamic considerations in the static limit. Our calculations predict that in the disc-dominated soft thermal and intermediate states, the wind should be thermodynamically stable and hence observable. On the other hand, in the power-law-dominated spectrally hard state the wind is found to be thermodynamically unstable for a certain range of 3.55 ≤ log ξ ≤ 4.20. In the spectrally hard state, a large number of the He-like and H-like ions (including e.g. Fe XXV, ArXVIII and S XV) have peak ion fractions in the unstable ionization parameter (ξ) range, making these ions undetectable. Our theoretical predictions have clear corroboration in the literature reporting differences in wind ion observability as the BHBs transition through the accretion states While this effect may not be the only one responsible for the observed gradient in the wind properties as a function of the accretion state in BHBs, it is clear that its inclusion in the calculations is crucial for understanding the link between the environment of the compact object and its accretion processes. © 2013 The Authors Published by Oxford University Press on behalf of the Royal Astronomical Society.

Cite

CITATION STYLE

APA

Chakravorty, S., Lee, J. C., & Neilsen, J. (2013). The effects of thermodynamic stability on wind properties in different low-mass black hole binary states. Monthly Notices of the Royal Astronomical Society, 436(1), 560–569. https://doi.org/10.1093/mnras/stt1593

Register to see more suggestions

Mendeley helps you to discover research relevant for your work.

Already have an account?

Save time finding and organizing research with Mendeley

Sign up for free