Comparison of different human tissue processing methods for maximization of bacterial recovery

10Citations
Citations of this article
58Readers
Mendeley users who have this article in their library.

This article is free to access.

Abstract

Tissues are valuable microbiological samples that have proved superiority over swabs. Culture of tissue samples is used in the diagnosis of a variety of infections. However, as well as factors such as the site of obtaining the sample, the number of samples, and previous antibiotic use, the method of tissue processing may have an important effect on sensitivity. Data from the literature comparing different tissue processing methods is very limited. This study aimed to compare different mechanical and chemical methods of tissue processing in terms of efficacy and retaining the viability of the bacteria in the tissues. Standard suspensions of Staphylococcus aureus and Escherichia coli were prepared and treated differently to test the effect of that treatment on bacterial viability. Artificially inoculated pork tissue and known infected human tissue samples were then processed by different methods prior to culture, and results were compared. Percentages of reduction in the number of viable bacteria compared to the control by homogenization was similar to 5-min dithiothreitol treatment but significantly lower than bead beating. Bacterial recovery from homogenized human tissues was significantly higher than from any other method of treatment. Although bead beating could be the most efficient method in obtaining a homogeneous tissue product, it significantly reduces the number of viable bacteria within tissues. Homogenization offers the most effective easily controllable retrieval of bacteria from tissue and retains their viability. Guidelines for diagnosing infections using tissue samples should include a standardized processing method.

Author supplied keywords

Cite

CITATION STYLE

APA

Askar, M., Ashraf, W., Scammell, B., & Bayston, R. (2019). Comparison of different human tissue processing methods for maximization of bacterial recovery. European Journal of Clinical Microbiology and Infectious Diseases, 38(1), 149–155. https://doi.org/10.1007/s10096-018-3406-4

Register to see more suggestions

Mendeley helps you to discover research relevant for your work.

Already have an account?

Save time finding and organizing research with Mendeley

Sign up for free