In this study, a honeycomb-like porous-structured nickel–iron–cobalt layered double hydroxide/Ti3C2Tx (NiFeCo–LDH@MXene) composite was successfully fabricated on a three-dimensional nickel foam using a simple hydrothermal approach. Owing to their distinguishable characteristics, the fabricated honeycomb porous-structured NiFeCo–LDH@MXene composites exhibited outstanding bifunctional electrocatalytic activity for pair hydrogen and oxygen evolution reactions in alkaline medium. The developed NiFeCo–LDH@MXene electrocatalyst required low overpotentials of 130 and 34 mV to attain a current density of 10 mA cm−2 for OER and HER, respectively. Furthermore, an assembled NiFeCo–LDH@MXene‖NiFeCo–LDH@MXene device exhibited a cell voltage of 1.41 V for overall water splitting with a robust firmness for over 24 h to reach 10 mA cm−2 current density, signifying outstanding performance for water splitting reactions. These results demonstrated the promising potential of the designed 3D porous NiFeCo–LDH@MXene sheets as outstanding candidates to replace future green energy conversion devices.
Mendeley helps you to discover research relevant for your work.
CITATION STYLE
Hussain, S., Vikraman, D., Nazir, G., Mehran, M. T., Shahzad, F., Batoo, K. M., … Jung, J. (2022). Development of Binder-Free Three-Dimensional Honeycomb-like Porous Ternary Layered Double Hydroxide-Embedded MXene Sheets for Bi-Functional Overall Water Splitting Reactions. Nanomaterials, 12(16). https://doi.org/10.3390/nano12162886