In this study, a honeycomb-like porous-structured nickel–iron–cobalt layered double hydroxide/Ti3C2Tx (NiFeCo–LDH@MXene) composite was successfully fabricated on a three-dimensional nickel foam using a simple hydrothermal approach. Owing to their distinguishable characteristics, the fabricated honeycomb porous-structured NiFeCo–LDH@MXene composites exhibited outstanding bifunctional electrocatalytic activity for pair hydrogen and oxygen evolution reactions in alkaline medium. The developed NiFeCo–LDH@MXene electrocatalyst required low overpotentials of 130 and 34 mV to attain a current density of 10 mA cm−2 for OER and HER, respectively. Furthermore, an assembled NiFeCo–LDH@MXene‖NiFeCo–LDH@MXene device exhibited a cell voltage of 1.41 V for overall water splitting with a robust firmness for over 24 h to reach 10 mA cm−2 current density, signifying outstanding performance for water splitting reactions. These results demonstrated the promising potential of the designed 3D porous NiFeCo–LDH@MXene sheets as outstanding candidates to replace future green energy conversion devices.
CITATION STYLE
Hussain, S., Vikraman, D., Nazir, G., Mehran, M. T., Shahzad, F., Batoo, K. M., … Jung, J. (2022). Development of Binder-Free Three-Dimensional Honeycomb-like Porous Ternary Layered Double Hydroxide-Embedded MXene Sheets for Bi-Functional Overall Water Splitting Reactions. Nanomaterials, 12(16). https://doi.org/10.3390/nano12162886
Mendeley helps you to discover research relevant for your work.