Oxidative stress-mediated TXNIP loss causes RPE dysfunction

43Citations
Citations of this article
44Readers
Mendeley users who have this article in their library.

This article is free to access.

Abstract

The disruption of the retinal pigment epithelium (RPE), for example, through oxidative damage, is a common factor underlying age-related macular degeneration (AMD). Aberrant autophagy also contributes to AMD pathology, as autophagy maintains RPE homeostasis to ensure blood–retinal barrier (BRB) integrity and protect photoreceptors. Thioredoxin-interacting protein (TXNIP) promotes cellular oxidative stress by inhibiting thioredoxin reducing capacity and is in turn inversely regulated by reactive oxygen species levels; however, its role in oxidative stress-induced RPE cell dysfunction and the mechanistic link between TXNIP and autophagy are largely unknown. Here, we observed that TXNIP expression was rapidly downregulated in RPE cells under oxidative stress and that RPE cell proliferation was decreased. TXNIP knockdown demonstrated that the suppression of proliferation resulted from TXNIP depletion-induced autophagic flux, causing increased p53 activation via nuclear localization, which in turn enhanced AMPK phosphorylation and activation. Moreover, TXNIP downregulation further negatively impacted BRB integrity by disrupting RPE cell tight junctions and enhancing cell motility by phosphorylating, and thereby activating, Src kinase. Finally, we also revealed that TXNIP knockdown upregulated HIF-1α, leading to the enhanced secretion of VEGF from RPE cells and the stimulation of angiogenesis in cocultured human retinal microvascular endothelial cells. This suggests that the exposure of RPE cells to sustained oxidative stress may promote choroidal neovascularization, another AMD pathology. Together, these findings reveal three distinct mechanisms by which TXNIP downregulation disrupts RPE cell function and thereby exacerbates AMD pathogenesis. Accordingly, reinforcing or restoring BRB integrity by targeting TXNIP may serve as an effective therapeutic strategy for preventing or attenuating photoreceptor damage in AMD.

Register to see more suggestions

Mendeley helps you to discover research relevant for your work.

Already have an account?

Cite

CITATION STYLE

APA

Ji Cho, M., Yoon, S. J., Kim, W., Park, J., Lee, J., Park, J. G., … Min, J. K. (2019). Oxidative stress-mediated TXNIP loss causes RPE dysfunction. Experimental and Molecular Medicine, 51(10). https://doi.org/10.1038/s12276-019-0327-y

Readers' Seniority

Tooltip

PhD / Post grad / Masters / Doc 18

69%

Researcher 5

19%

Professor / Associate Prof. 3

12%

Readers' Discipline

Tooltip

Biochemistry, Genetics and Molecular Bi... 11

48%

Neuroscience 4

17%

Agricultural and Biological Sciences 4

17%

Medicine and Dentistry 4

17%

Save time finding and organizing research with Mendeley

Sign up for free