Unsteady shock front waviness in shock-buffet of transonic aircraft

0Citations
Citations of this article
13Readers
Mendeley users who have this article in their library.

This article is free to access.

Abstract

The unsteady transonic aerodynamics of a wing-body configuration is investigated by solving the Unsteady Reynolds-averaged Navier-Stokes equations closed with the full Reynolds Stress Model. This work presents the prediction of flow field characteristics during deep shock-buffet penetration of a transport aircraft-representative geometry. Mach number of 0.85, and Reynolds number of 5 million based on the mean chord, are selected to reproduce experimental test conditions that serve as validating datasets. The results obtained give information about both surface and flow field shock-buffet dynamics. An unsteady shock front is observed on the suction side of the wing which gives birth to the so-called buffet cells. Flow field characteristics are dominated by the presence of lambda-shaped shocks and fully separated boundary layer over a significant part of the wing.

Author supplied keywords

Cite

CITATION STYLE

APA

Apetrei, R. M., Ciobaca, V., Curiel-Sosa, J. L., & Qin, N. (2020). Unsteady shock front waviness in shock-buffet of transonic aircraft. Advances in Aerodynamics, 2(1). https://doi.org/10.1186/s42774-020-00034-x

Register to see more suggestions

Mendeley helps you to discover research relevant for your work.

Already have an account?

Save time finding and organizing research with Mendeley

Sign up for free