Eukaryotes possess a variety of histone-modifying protein complexes. Generally, a histone-modifying protein complex consists of multiple subunits, that is, a catalytic subunit and the associated subunits. In this study, I analyzed 62 and 48 subunits of the histone-modifying protein complexes of Saccharomyces cerevisiae and Schizosaccharomyces pombe, respectively. The evolutionary conservation levels of the 110 subunits were measured. The measurements revealed that the conservation levels of the catalytic subunits are significantly higher than those of the associated subunits of the histone acetyltransferase and deacetylase complexes; however, the conservation level of the catalytic subunits is similar to that of the associated subunits of the histone methyltransferase complexes. Thus, in the fungal histone acetylation and deacetylation systems, the catalytic subunits of histone-modifying protein complexes are conserved and the associated subunits are evolutionary lineage-specific. In contrast, in the fungal histone methylation system, both the catalytic and the associated subunits are evolutionary lineage-specific.
CITATION STYLE
Nishida, H. (2009). Evolutionary conservation levels of subunits of histone-modifying protein complexes in fungi. Comparative and Functional Genomics, 2009, 1–6. https://doi.org/10.1155/2009/379317
Mendeley helps you to discover research relevant for your work.