This research focuses on creating and maintaining a stable dispersion of carbon nanofibers (CNFs) in portland cement based materials. A microfine cement is used in conjunction with an untraditional dispersion method to encourage and stabilize the dispersion of CNFs in concentrations up to 5% by mass of cement. A computational simulation was utilized to examine an effect called geometric clustering on the dispersion of CNFs among Type I/II and microfine cement grains. The geometric clustering simulation revealed a higher achievable dispersion for microfine cement than for Type I/II cement. Scanning electron microscopy (SEM) was used to quantify the dispersion of CNFs among Type I/II and microfine cement grains. SEM image analysis indicated excessive CNF clumping among Type I/II cement grains, while the dispersion of hybrid microfine cement mortar continued to improve as the concentration of CNFs increased up to 5% by mass of cement. Mortar cube elastic stiffness and mortar prism flexure tests revealed that high concentrations of CNFs had detrimental effects in hybrid Type I/II cement mortar, whereas similar concentrations of CNFs had negligible or beneficial effects in hybrid microfine cement mortar.
CITATION STYLE
Hogancamp, J., & Grasley, Z. (2017). Dispersion of high concentrations of carbon nanofibers in portland cement mortars. Journal of Nanomaterials, 2017. https://doi.org/10.1155/2017/9375293
Mendeley helps you to discover research relevant for your work.