Microstructure and Properties of Ag-Doped ZnO Grown Hydrothermally on a Graphene-Coated Polyethylene Terephthalate Bilayer Flexible Substrate

10Citations
Citations of this article
16Readers
Mendeley users who have this article in their library.

Abstract

Ag-doped ZnO nanorods growth on a PET-graphene substrate (Ag-ZnO/PET-GR) with different Ag-doped content were synthesized by low-temperature ion-sputtering-assisted hydrothermal synthesis method. The phase composition, morphologies of ZnO, and electrical properties were analyzed. Ag-doping affects the initially perpendicular growth of ZnO nanorods, resulting in oblique growth of ZnO nanorods becoming more obvious as the Ag-doped content increases, and the diameter of the nanorods decreasing gradually. The width of the forbidden band gap of the ZnO films decreases with increasing Ag-doped content. For the Ag-ZnO/PET-GR composite structure, the Ag-ZnO thin film with 5% Ag-doped content has the largest carrier concentration (8.1 × 1018 cm−3), the highest mobility (67 cm2 · V−1 · s−1), a small resistivity (0.09 Ω·cm), and impressive electrical properties.

Cite

CITATION STYLE

APA

Ai, T., Fan, Y., Wang, H., Zou, X., Bao, W., Deng, Z., … Li, M. (2021). Microstructure and Properties of Ag-Doped ZnO Grown Hydrothermally on a Graphene-Coated Polyethylene Terephthalate Bilayer Flexible Substrate. Frontiers in Chemistry, 9. https://doi.org/10.3389/fchem.2021.661127

Register to see more suggestions

Mendeley helps you to discover research relevant for your work.

Already have an account?

Save time finding and organizing research with Mendeley

Sign up for free