dSTIM and Ral/exocyst mediated synaptic release from pupal dopaminergic neurons sustains drosophila flight

1Citations
Citations of this article
15Readers
Mendeley users who have this article in their library.

Abstract

Manifestation of appropriate behaviour in adult animals requires developmental mechanisms that help in the formation of correctly wired neural circuits. Flight circuit development in Drosophila requires Store-operated calcium entry (SOCE) through the STIM/Orai pathway. SOCE-associated flight deficits in adult Drosophila derive extensively from regulation of gene expression in pupal neurons, and one such SOCE-regulated gene encodes the small GTPase Ral. The cellular mechanism by which Ral helps in maturation of the flight circuit was not understood. Here, we show that knockdown of components of a Ral effector, the exocyst complex, in pupal neurons also leads to reduced flight bout durations, and this phenotype derives primarily from dopaminergic neurons. Importantly, synaptic release from pupal dopaminergic neurons is abrogated upon knockdown of either dSTIM, Ral or exocyst components. Ral overexpression restores the diminished synaptic release of dStim knockdown neurons as well as flight deficits associated with dSTIM knockdown in dopaminergic neurons. These results identify Ral mediated vesicular release as an effector mechanism of neuronal SOCE in pupal dopaminergic neurons with functional consequences on flight behavior.

Cite

CITATION STYLE

APA

Richhariya, S., Jayakumar, S., Sukumar, S. K., & Hasan, G. (2018). dSTIM and Ral/exocyst mediated synaptic release from pupal dopaminergic neurons sustains drosophila flight. ENeuro, 5(3). https://doi.org/10.1523/ENEURO.0455-17.2018

Register to see more suggestions

Mendeley helps you to discover research relevant for your work.

Already have an account?

Save time finding and organizing research with Mendeley

Sign up for free