Assembling a cellulase cocktail and a cellodextrin transporter into a yeast host for CBP ethanol production

67Citations
Citations of this article
130Readers
Mendeley users who have this article in their library.

This article is free to access.

Abstract

Background: Many microorganisms possess enzymes that can efficiently degrade lignocellulosic materials, but do not have the capability to produce a large amount of ethanol. Thus, attempts have been made to transform such enzymes into fermentative microbes to serve as hosts for ethanol production. However, an efficient host for a consolidated bioprocess (CBP) remains to be found. For this purpose, a synthetic biology technique that can transform multiple genes into a genome is instrumental. Moreover, a strategy to select cellulases that interact synergistically is needed. Results: To engineer a yeast for CBP bio-ethanol production, a synthetic biology technique, called "promoter-based gene assembly and simultaneous overexpression" (PGASO), that can simultaneously transform and express multiple genes in a kefir yeast, Kluyveromyces marxianus KY3, was recently developed. To formulate an efficient cellulase cocktail, a filter-paper-activity assay for selecting heterologous cellulolytic enzymes was established in this study and used to select five cellulase genes, including two cellobiohydrolases, two endo-β-1,4-glucanases and one beta-glucosidase genes from different fungi. In addition, a fungal cellodextrin transporter gene was chosen to transport cellodextrin into the cytoplasm. These six genes plus a selection marker gene were one-step assembled into the KY3 genome using PGASO. Our experimental data showed that the recombinant strain KR7 could express the five heterologous cellulase genes and that KR7 could convert crystalline cellulose into ethanol. Conclusion: Seven heterologous genes, including five cellulases, a cellodextrin transporter and a selection marker, were simultaneously transformed into the KY3 genome to derive a new strain, KR7, which could directly convert cellulose to ethanol. The present study demonstrates the potential of our strategy of combining a cocktail formulation protocol and a synthetic biology technique to develop a designer yeast host.

Cite

CITATION STYLE

APA

Chang, J. J., Ho, F. J., Ho, C. Y., Wu, Y. C., Hou, Y. H., Huang, C. C., … Li, W. H. (2013). Assembling a cellulase cocktail and a cellodextrin transporter into a yeast host for CBP ethanol production. Biotechnology for Biofuels, 6(1). https://doi.org/10.1186/1754-6834-6-19

Register to see more suggestions

Mendeley helps you to discover research relevant for your work.

Already have an account?

Save time finding and organizing research with Mendeley

Sign up for free