Pharmacological chaperone action in humanized mouse models of MC4R-linked obesity

14Citations
Citations of this article
22Readers
Mendeley users who have this article in their library.

Abstract

MC4R mutations represent the largest monogenic cause of obesity, resulting mainly from receptor misfolding and intracellular retention by the cellular quality control system. The present study aimed at determining whether pharmacological chaperones (PCs) that restore folding and plasma membrane trafficking by stabilizing near native protein conformation may represent valid therapeutic avenues for the treatment of melanocortin type 4 receptor-linked (MC4Rlinked) obesity. To test the therapeutic PC potential, we engineered humanized MC4R (hMC4R) mouse models expressing either the WT human MC4R or a prevalent obesity-causing mutant (R165W). Administration of a PC able to rescue cell surface expression and functional activity of R165W-hMC4R in cells restored the anorexigenic response of the R165W-hMC4R obese mice to melanocortin agonist, providing a proof of principle for the therapeutic potential of MC4R-targeting PCs in vivo. Interestingly, the expression of the WT-hMC4R in mice revealed lower sensitivity of the human receptor to α-melanocyte-stimulating hormone (α-MSH) but not β-MSH or melanotan II, resulting in a lower penetrance obese phenotype in the WT-hMC4R versus R165W-hMC4R mice. In conclusion, we created 2 new obesity models, a hypomorphic highlighting species differences and an amorphic providing a preclinical model to test the therapeutic potential of PCs to treat MC4Rlinked obesity.

Cite

CITATION STYLE

APA

René, P., Lanfray, D., Richard, D., & Bouvier, M. (2021). Pharmacological chaperone action in humanized mouse models of MC4R-linked obesity. JCI Insight, 6(4). https://doi.org/10.1172/jci.insight.132778

Register to see more suggestions

Mendeley helps you to discover research relevant for your work.

Already have an account?

Save time finding and organizing research with Mendeley

Sign up for free