Rh doped Ni and Co catalysts, Rh-M/CeO2(20 wt %)-Al 2O3 (0.2 wt % of Rh; M = Ni or Co, 20 wt %) were synthesized to produce hydrogen via autothermal reforming (ATR) of commercial gasoline at 700 oC under the conditions of a S/C ratio of 2.0, an O/C ratio of 0.84, and a gas hourly space velocity (GHSV) of 20,000 h-1. The Rh-Ni/CeO 2(20 wt %)-Al2O3 catalyst (1) exhibited excellent activities, with H2 and (H2+CO) yields of 2.04 and 2.58 mol/mol C, respectively. In addition, this catalyst proved to be highly stable over 100 h without catalyst deactivation, as evidenced by energy dispersive spectroscopy (EDX) and elemental analyses. Compared to 1, Rh-Co/CeO2(20 wt %)-Al2O3 catalyst (2) exhibited relatively low stability, and its activity decreased after 57 h. In line with this observation, elemental analyses confirmed that nearly no carbon species were formed at 1 while carbon deposits (10 wt %) were found at 2 following the reaction, which suggests that carbon coking is the main process for catalyst deactivation.
CITATION STYLE
Jung, Y. G., Lee, D. H., Kim, Y., Lee, J. H., Nam, S. W., Choi, D. K., & Yoon, C. W. (2014). Rh-Ni and Rh-Co catalysts for autothermal reforming of gasoline. Bulletin of the Korean Chemical Society, 35(1), 231–235. https://doi.org/10.5012/bkcs.2014.35.1.231
Mendeley helps you to discover research relevant for your work.