Linear and nonlinear shear studies reveal supramolecular responses in supercooled monohydroxy alcohols with faint dielectric signatures

14Citations
Citations of this article
8Readers
Mendeley users who have this article in their library.
Get full text

Abstract

Monohydroxy alcohols (MAs) with methyl and hydroxyl side groups attached to the same carbon atom in the alkyl backbone can display very weak structural and supramolecular dielectric relaxation processes when probed in the regime of small electrical fields. This can render their separation and assignment difficult in the pure liquids. When mixing with bromoalkanes, a faint Debye-like process can be resolved dielectrically for 4-methyl-4-heptanol. To achieve a separation of structural and supramolecular processes in pure 4-methyl-4-heptanol and 3-methyl-3-heptanol, mechanical experiments are carried out in the linear-response regime as well as using medium-angle oscillatory shear amplitudes. It is demonstrated that first-order and third-order nonlinear mechanical effects allow for a clear identification of supramolecular viscoelastic modes even for alcohols in which they leave only a weak signature in the linear-response shear modulus. Additionally, the nonlinear rheological behavior of 2-ethyl-1-hexanol is studied, revealing that its linearly detected terminal mode does not coincide with that revealed beyond the linear-response regime. This finding contrasts with those for the other MAs studied in this work.

Cite

CITATION STYLE

APA

Bierwirth, S. P., Honorio, G., Gainaru, C., & Böhmer, R. (2019). Linear and nonlinear shear studies reveal supramolecular responses in supercooled monohydroxy alcohols with faint dielectric signatures. Journal of Chemical Physics, 150(10). https://doi.org/10.1063/1.5086529

Register to see more suggestions

Mendeley helps you to discover research relevant for your work.

Already have an account?

Save time finding and organizing research with Mendeley

Sign up for free