Probabilistic seismic hazard assessment (PSHA) takes into account as much data as possible for defining the initial seismic source zone model. In response to this, an algorithm has been developed for integration of geological, geophysical and seismological data through a spatial index showing the presence or absence of a potential seismic source feature in the input data. The spatial matching index (SMI) is calculated to define the coincidence of independent data showing any indications for existence of a fault structure. It is applied for hazard assessment of Bulgaria through quantification of the seismic potential of 416 square blocks, 20 × 20 km in size covering the entire territory of Bulgaria and extended by 20 km outside of the country borders. All operations are carried out in GIS environment using its capabilities to work with different types of georeferenced spatial data. Results show that the highest seismic potential (largest SMI) is observed in 56 block elements (13% of the territory) clearly delineating cores of the source zones. Partial match is registered in 98 block elements when one of the features is missing. Not any evidence for earthquake occurrence is predicted by our calculation in 117 elements, comprising 28% of the examined area. The quantitative parameter for spatial data integration which is obtained in the present research may be used to analyze information regardless of its type and purpose.
CITATION STYLE
Trifonova, P., Metodiev, M., Stavrev, P., Simeonova, S., & Solakov, D. (2019). Integration of Geological, Geophysical and Seismological Data for Seismic Hazard Assessment Using Spatial Matching Index. Journal of Geographic Information System, 11(02), 185–195. https://doi.org/10.4236/jgis.2019.112013
Mendeley helps you to discover research relevant for your work.