Engineering of bacterial methyl ketone synthesis for biofuels

121Citations
Citations of this article
238Readers
Mendeley users who have this article in their library.

This article is free to access.

Abstract

We have engineered Escherichia coli to overproduce saturated and monounsaturated aliphatic methyl ketones in the C11 to C15 (diesel) range; this group of methyl ketones includes 2-undecanone and 2-tridecanone, which are of importance to the flavor and fragrance industry and also have favorable cetane numbers (as we report here). We describe specific improvements that resulted in a 700-fold enhancement in methyl ketone titer relative to that of a fatty acid-overproducing E. coli strain, including the following: (i) overproduction of β-ketoacyl coenzyme A (CoA) thioesters achieved by modification of the β-oxidation pathway (specifically, overexpression of a heterologous acyl-CoA oxidase and native FadB and chromosomal deletion of fadA) and (ii) overexpression of a native thioesterase (FadM). FadM was previously associated with oleic acid degradation, not methyl ketone synthesis, but outperformed a recently identified methyl ketone synthase (Solanum habrochaites MKS2 [ShMKS2], a thioesterase from wild tomato) in β-ketoacyl-CoA-overproducing strains tested. Whole-genome transcriptional (microarray) studies led to the discovery that FadM is a valuable catalyst for enhancing methyl ketone production. The use of a two-phase system with decane enhanced methyl ketone production by 4- to 7-fold in addition to increases from genetic modifications. © 2012, American Society for Microbiology.

Cite

CITATION STYLE

APA

Goh, E. B., Baidoo, E. E. K., Keasling, J. D., & Beller, H. R. (2012). Engineering of bacterial methyl ketone synthesis for biofuels. Applied and Environmental Microbiology, 78(1), 70–80. https://doi.org/10.1128/AEM.06785-11

Register to see more suggestions

Mendeley helps you to discover research relevant for your work.

Already have an account?

Save time finding and organizing research with Mendeley

Sign up for free