A wide-band and high gain circularly polarized (CP) graphene-based reflectarray operating in the THz regime is proposed and theoretically investigated in this paper. The proposed reflectarray consists of a THz CP source and several graphene-based unit-cells. Taking advantages of the Pancharatnam Berry (PB) phase principle, the graphene-based unit-cell is capable of realizing a tunable phase range of 360° in a wide-band (1.4-1.7 THz) by unit-cell rotating, overcoming the restriction of intrinsic narrow-band resonance in graphene. Therefore, this graphene-based unit-cell exhibits superior bandwidth and phase tunability to its previous counterparts. To demonstrate this, a wide-band (1.4-1.7 THz) focusing metasurface based on the proposed unit-cell that exhibits excellent focusing effect was designed. Then, according to the reversibility of the optical path, a CP reflectarray was realized by placing a wide-band CP THz source at the focal point of the metasurface. Numerical simulation demonstrates that this reflectarray can achieve a stable high gain up to 15 dBic and an axial ratio around 2.1 dB over the 1.4-1.7 THz band. The good radiation performance of the proposed CP reflectarray, as demonstrated, underlines its suitability for the THz communication applications. Moreover, the design principle of this graphene-based reflectarray with a full 360° phase range tunable unit-cells provides a new pathway to design high-performance CP reflectarray in the THz regime.
CITATION STYLE
Deng, L., Zhang, Y., Zhu, J., & Zhang, C. (2018). Wide-band circularly polarized reflectarray using graphene-based Pancharatnam-Berry phase unit-cells for terahertz communication. Materials, 11(6). https://doi.org/10.3390/ma11060956
Mendeley helps you to discover research relevant for your work.