Single-Image Super-Resolution Improvement of X-ray Single-Particle Diffraction Images Using a Convolutional Neural Network

2Citations
Citations of this article
12Readers
Mendeley users who have this article in their library.

This article is free to access.

Abstract

Femtosecond X-ray pulse lasers are promising probes for the elucidation of the multiconformational states of biomolecules because they enable snapshots of single biomolecules to be observed as coherent diffraction images. Multi-image processing using an X-ray free-electron laser has proven to be a successful structural analysis method for viruses. However, the performance of single-particle analysis (SPA) for flexible biomolecules with sizes ≤100 nm remains difficult. Owing to the multiconformational states of biomolecules and noisy character of diffraction images, diffraction image improvement by multi-image processing is often ineffective for such molecules. Herein, a single-image super-resolution (SR) model was constructed using an SR convolutional neural network (SRCNN). Data preparation was performed in silico to consider the actual observation situation with unknown molecular orientations and the fluctuation of molecular structure and incident X-ray intensity. It was demonstrated that the trained SRCNN model improved the single-particle diffraction image quality, corresponding to an observed image with an incident X-ray intensity (approximately three to seven times higher than the original X-ray intensity), while retaining the individuality of the diffraction images. The feasibility of SPA for flexible biomolecules with sizes ≤100 nm was dramatically increased by introducing the SRCNN improvement at the beginning of the various structural analysis schemes.

Cite

CITATION STYLE

APA

Tokuhisa, A., Akinaga, Y., Terayama, K., Okamoto, Y., & Okuno, Y. (2022, July 25). Single-Image Super-Resolution Improvement of X-ray Single-Particle Diffraction Images Using a Convolutional Neural Network. Journal of Chemical Information and Modeling. American Chemical Society. https://doi.org/10.1021/acs.jcim.2c00660

Register to see more suggestions

Mendeley helps you to discover research relevant for your work.

Already have an account?

Save time finding and organizing research with Mendeley

Sign up for free