The challenge to fruitfully merge state-of-the-art techniques from mathematical finance and numerical analysis has inspired researchers to develop fast deterministic option pricing methods. As a result, highly efficient algorithms to compute option prices in Lévy models by solving partial integro-differential equations have been developed. In order to provide a solid mathematical foundation for these methods, we derive a Feynman–Kac representation of variational solutions to partial integro-differential equations that characterize conditional expectations of functionals of killed time-inhomogeneous Lévy processes. We allow a wide range of underlying stochastic processes, comprising processes with Brownian part as well as a broad class of pure jump processes such as generalized hyperbolic, multivariate normal inverse Gaussian, tempered stable, and α-semistable Lévy processes. By virtue of our mild regularity assumptions as to the killing rate and the initial condition of the partial integro-differential equation, our results provide a rigorous basis for numerous applications in financial mathematics and in probability theory. We implement a Galerkin scheme to solve the corresponding pricing equation numerically and illustrate the effect of a killing rate.
CITATION STYLE
Glau, K. (2016). A Feynman–Kac-type formula for Lévy processes with discontinuous killing rates. Finance and Stochastics, 20(4), 1021–1059. https://doi.org/10.1007/s00780-016-0301-7
Mendeley helps you to discover research relevant for your work.