Development of a Hybrid Chitosan- A nd Niacinamide-Coupled ZnO Nanoparticle Composite for Sun Protection Application

12Citations
Citations of this article
42Readers
Mendeley users who have this article in their library.

This article is free to access.

Abstract

Zinc oxide nanoparticles (ZnO) have long been utilized as UV-protective sunscreen components due to their high durability and lower skin irritation while maintaining capability for blocking UV rays. However, the dispersal and transparency properties of ZnO need to be enhanced in order to improve the capacity for creating effective sunscreen through control of the physiochemical properties of ZnO. In this study, chitosan or niacinamide, which are suitable functional cosmetic compounds and effective skin lightening agents, are combined with ZnO for the development of better UV-protective products. Each biocompatible coating material is individually attached on its surface after the synthesis of ZnO. The size is 70 nm using the sol-gel method. Their morphology and chemical structure are characterized by FT-IR, XRD, SEM, TEM, TGA, and zeta potential. The results indicate that approximately 50% of chitosan and 5% niacinamide were coated on the ZnO. To confirm the capacity of each surface-coated ZnO with chitosan and niacinamide as a sunscreen, we measured their transmission, reflectance, and sun protection factor (SPF) using a UV spectrophotometer and SPF. As a result, the niacinamide-coated ZnO shows remarkably lower transmission and high reflectance against UV rays than that of bare ZnO and chitosan-coated ZnO. Furthermore, niacinamide-coated ZnO exhibits great lightening effects. Consequently, these results demonstrate that niacinamide coating is highly effective for the production of sunscreen emulsions.

Cite

CITATION STYLE

APA

Jo, H. J., Joo, S. M., Kim, J. Y., Yu, K. H., Kim, S. W., & Peng, B. (2019). Development of a Hybrid Chitosan- A nd Niacinamide-Coupled ZnO Nanoparticle Composite for Sun Protection Application. Journal of Nanomaterials, 2019. https://doi.org/10.1155/2019/5957606

Register to see more suggestions

Mendeley helps you to discover research relevant for your work.

Already have an account?

Save time finding and organizing research with Mendeley

Sign up for free