TEINet: Towards an efficient architecture for video recognition

200Citations
Citations of this article
111Readers
Mendeley users who have this article in their library.

Abstract

Efficiency is an important issue in designing video architectures for action recognition. 3D CNNs have witnessed remarkable progress in action recognition from videos. However, compared with their 2D counterparts, 3D convolutions often introduce a large amount of parameters and cause high computational cost. To relieve this problem, we propose an efficient temporal module, termed as Temporal Enhancementand- Interaction (TEI Module), which could be plugged into the existing 2D CNNs (denoted by TEINet). The TEI module presents a different paradigm to learn temporal features by decoupling the modeling of channel correlation and temporal interaction. First, it contains a Motion Enhanced Module (MEM) which is to enhance the motion-related features while suppress irrelevant information (e.g., background). Then, it introduces a Temporal Interaction Module (TIM) which supplements the temporal contextual information in a channel-wise manner. This two-stage modeling scheme is not only able to capture temporal structure flexibly and effectively, but also efficient for model inference. We conduct extensive experiments to verify the effectiveness of TEINet on several benchmarks (e.g., Something-Something V1&V2, Kinetics, UCF101 and HMDB51). Our proposed TEINet can achieve a good recognition accuracy on these datasets but still preserve a high efficiency.

Cite

CITATION STYLE

APA

Liu, Z., Luo, D., Wang, Y., Wang, L., Tai, Y., Wang, C., … Lu, T. (2020). TEINet: Towards an efficient architecture for video recognition. In AAAI 2020 - 34th AAAI Conference on Artificial Intelligence (pp. 11669–11676). AAAI press. https://doi.org/10.1609/aaai.v34i07.6836

Register to see more suggestions

Mendeley helps you to discover research relevant for your work.

Already have an account?

Save time finding and organizing research with Mendeley

Sign up for free