Introduction. The domesticated dog, Canis lupus familiaris, has been selectively bred to produce extreme diversity in phenotype and genotype. Dogs have an immense diversity in weight and height. Specific differences in metabolism have not been characterized in small dogs as compared to larger dogs. Objectives. This study aims to identify metabolic, clinical, and microbiota differences between small and larger dogs. Methods. Gas chromatography/mass spectrometry, liquid chromatography/tandem mass spectrometry, clinical chemistry analysis, dual-energy X-ray absorptiometry, and 16S pyrosequencing were used to characterize blood metabolic, clinical, and fecal microbiome systems, respectively. Eighty-three canines from seven different breeds, fed the same kibble diet for 5 weeks, were used in the study. Results. 449 metabolites, 16 clinical parameters, and 6 bacteria (at the genus level) were significantly different between small and larger dogs. Hierarchical clustering of the metabolites yielded 8 modules associated with small dog size. Conclusion. Small dogs had a lower antioxidant status and differences in circulating amino acids. Some of the amino acid differences could be attributed to differences in microflora. Additionally, analysis of small dog metabolites and clinical parameters reflected a network which strongly associates with kidney function.
CITATION STYLE
Middleton, R. P., Lacroix, S., Scott-Boyer, M. P., Dordevic, N., Kennedy, A. D., Slusky, A. R., … Kaput, J. (2017). Metabolic Differences between Dogs of Different Body Sizes. Journal of Nutrition and Metabolism, 2017. https://doi.org/10.1155/2017/4535710
Mendeley helps you to discover research relevant for your work.