In this work, the treatment of oily wastewater was investigated using developed cellulose acetate (CA) membranes blended with Nylon 66. Membrane characterization and permeation results in terms of oil rejection and flux were compared with a commercial CA membrane. The solution casting method was used to fabricate membranes composed of CA and Nylon 66. Scanning Electron Microscopy (SEM) analysis was done to examine the surface morphology of the membrane as well as the influence of solvent on the overall structure of the developed membranes. Mechanical and thermal properties of developed blended membranes and a commercial membrane were examined by thermogravimetric analysis (TGA) and universal (tensile) testing machine (UTM). Membrane characterizations revealed that the thermal and mechanical properties of the fabricated blended membranes better than those of the commercial membrane. Membrane fluxes and rejection of oil as a function of Nylon 66 compositions and transmembrane pressure were measured. Experimental results revealed that the synthetic membrane (composed of 2% Nylon 66 and Dimethyl Sulfoxide (DMSO) as a solvent) gave a permeate flux of 33 L/m2h and an oil rejection of around 90%, whereas the commercial membrane showed a permeate flux of 22 L/m2h and an oil rejection of 70%.
CITATION STYLE
Hussain, A., & Al-Yaari, M. (2021). Development of polymeric membranes for oil/water separation. Membranes, 11(1), 1–15. https://doi.org/10.3390/membranes11010042
Mendeley helps you to discover research relevant for your work.