Fiber Formation from Silk Fibroin Using Pressurized Gyration

17Citations
Citations of this article
28Readers
Mendeley users who have this article in their library.

This article is free to access.

Abstract

Silk has attracted considerable interest for use in biomedical applications due to its high strength and promising biocompatibility. Degummed silk, consisting only of silk fibroin (SF), has been processed using various methods and can be made into films, sponges, and fibers. Pressurized gyration (PG) is capable of rapidly producing aligned fibers and offers a great amount of control over their structure and morphology. Here, SF fibers are produced for the first time using PG. The effect of varying SF concentration and applied working pressure to the gyration vessel is reported, along with the resulting effect on fiber diameter, morphology, and structural composition. Aligned microfibers are found at concentrations of 8, 10, 12 w/v%, with the lowest fiber diameters reported at 8 w/v% SF 0.3 MPa applied pressure (2.1 ± 1.3 µm). Fourier-transform infrared spectroscopy (FTIR) confirms the existence of PG spun fibers in both random coil and β-sheet formations.

Cite

CITATION STYLE

APA

Heseltine, P. L., Hosken, J., Agboh, C., Farrar, D., Homer-Vanniasinkam, S., & Edirisinghe, M. (2019). Fiber Formation from Silk Fibroin Using Pressurized Gyration. Macromolecular Materials and Engineering, 304(1). https://doi.org/10.1002/mame.201800577

Register to see more suggestions

Mendeley helps you to discover research relevant for your work.

Already have an account?

Save time finding and organizing research with Mendeley

Sign up for free