Extrapolating in vivo hepatic clearance from in vitro uptake data is a known challenge, especially for organic anion-transporting polypeptide transporter (OATP) substrates, and the well-stirred model (WSM) commonly yields systematic underpredictions for those anionic drugs, hypothetically due to "albumin-mediated hepatic drug uptake". In the present study, we demonstrate that the WSM incorporating the dynamic free fraction (fD), a measure of drug protein binding affinity, performs reasonably well in predicting hepatic clearance of OATP substrates. For a selection of anionic drugs, including atorvastatin, fluvastatin, pravastatin, rosuvastatin, pitavastatin, cerivastatin, and repaglinide, this dynamic well-stirred model (dWSM) correctly predicts hepatic plasma clearance within 2-fold error for six out of seven OATP substrates examined. The geometric mean of clearance ratios between the predicted and the observed values falls in the range of 1.21-1.38. As expected, the WSM with unbound fraction (fu) systematically underpredicts hepatic clearance with greater than 2-fold error for five out of seven drugs, and the geometric mean of clearance ratios between the predicted and the observed values is in the range of 0.20-0.29. The results suggest that, despite its simplicity, the dWSM operates well for transporter-mediated uptake clearance, and that clearance underprediction of OATP substrates may not necessarily be associated with the chemical class of the anionic drugs, nor is it a result of albumin- mediated hepatic drug uptake as currently hypothesized. Instead, the superior prediction power of the dWSM confirms the utility of the dynamic free fraction in clearance prediction and the importance of drug plasma binding kinetics in hepatic uptake clearance.
CITATION STYLE
Yan, Z., Ma, L., Hwang, N., Huang, J., Kenny, J. R., & Hop, C. E. C. A. (2024). Using the Dynamic Well-Stirred Model to Extrapolate Hepatic Clearance of Organic Anion-Transporting Polypeptide Transporter Substrates without Assuming Albumin-Mediated Hepatic Drug Uptake. Drug Metabolism and Disposition, 52(6), 548–554. https://doi.org/10.1124/dmd.124.001645
Mendeley helps you to discover research relevant for your work.