High cable forces deteriorate pinch force control in voluntary-closing body-powered prostheses

10Citations
Citations of this article
53Readers
Mendeley users who have this article in their library.

Abstract

Background It is generally asserted that reliable and intuitive control of upper-limb prostheses requires adequate feedback of prosthetic finger positions and pinch forces applied to objects. Bodypowered prostheses (BPPs) provide the user with direct proprioceptive feedback. Currently available BPPs often require high cable operation forces, which complicates control of the forces at the terminal device. The aim of this study is to quantify the influence of high cable forces on object manipulation with voluntary-closing prostheses. Method Able-bodied male subjects were fitted with a bypass-prosthesis with low and high cable force settings for the prehensor. Subjects were requested to grasp and transfer a collapsible object as fast as they could without dropping or breaking it. The object had a low and a high breaking force setting. Results Subjects conducted significantly more successful manipulations with the low cable force setting, both for the low (33% more) and high (50%) object's breaking force. The time to complete the task was not different between settings during successful manipulation trials. Conclusion High cable forces lead to reduced pinch force control during object manipulation. This implies that low cable operation forces should be a key design requirement for voluntaryclosing BPPs. Copyright:

Cite

CITATION STYLE

APA

Hichert, M., Abbink, D. A., Kyberd, P. J., & Plettenburg, D. H. (2017). High cable forces deteriorate pinch force control in voluntary-closing body-powered prostheses. PLoS ONE, 12(1). https://doi.org/10.1371/journal.pone.0169996

Register to see more suggestions

Mendeley helps you to discover research relevant for your work.

Already have an account?

Save time finding and organizing research with Mendeley

Sign up for free