Drivers’ visual perception quantification using 3d mobile sensor data for road safety

7Citations
Citations of this article
35Readers
Mendeley users who have this article in their library.

Abstract

To prevent driver accidents in cities, local governments have established policies to limit city speeds and create child protection zones near schools. However, if the same policy is applied throughout a city, it can be difficult to obtain smooth traffic flows. A driver generally obtains visual information while driving, and this information is directly related to traffic safety. In this study, we propose a novel geometric visual model to measure drivers’ visual perception and analyze the corresponding information using the line-of-sight method. Three-dimensional point cloud data are used to analyze on-site three-dimensional elements in a city, such as roadside trees and overpasses, which are normally neglected in urban spatial analyses. To investigate drivers’ visual perceptions of roads, we have developed an analytic model of three types of visual perception. By using this proposed method, this study creates a risk-level map according to the driver’s visual perception degree in Pangyo, South Korea. With the point cloud data from Pangyo, it is possible to analyze actual urban forms such as roadside trees, building shapes, and overpasses that are normally excluded from spatial analyses that use a reconstructed virtual space.

Cite

CITATION STYLE

APA

Choi, K., Byun, G., Kim, A., & Kim, Y. (2020). Drivers’ visual perception quantification using 3d mobile sensor data for road safety. Sensors (Switzerland), 20(10). https://doi.org/10.3390/s20102763

Register to see more suggestions

Mendeley helps you to discover research relevant for your work.

Already have an account?

Save time finding and organizing research with Mendeley

Sign up for free