Intrusion detection with unsupervised techniques for network management protocols over smart grids

7Citations
Citations of this article
8Readers
Mendeley users who have this article in their library.

Abstract

The present research work focuses on overcoming cybersecurity problems in the Smart Grid. Smart Grids must have feasible data capture and communications infrastructure to be able to manage the huge amounts of data coming from sensors. To ensure the proper operation of next-generation electricity grids, the captured data must be reliable and protected against vulnerabilities and possible attacks. The contribution of this paper to the state of the art lies in the identification of cyberattacks that produce anomalous behaviour in network management protocols. A novel neural projectionist technique (Beta Hebbian Learning, BHL) has been employed to get a general visual representation of the traffic of a network, making it possible to identify any abnormal behaviours and patterns, indicative of a cyberattack. This novel approach has been validated on 3 different datasets, demonstrating the ability of BHL to detect different types of attacks, more effectively than other state-of-the-art methods.

Cite

CITATION STYLE

APA

Vega, R. A. V., Chamoso-Santos, P., Briones, A. G., Casteleiro-Roca, J. L., Jove, E., Meizoso-López, M. del C., … Calvo-Rolle, J. L. (2020). Intrusion detection with unsupervised techniques for network management protocols over smart grids. Applied Sciences (Switzerland), 10(7). https://doi.org/10.3390/app10072276

Register to see more suggestions

Mendeley helps you to discover research relevant for your work.

Already have an account?

Save time finding and organizing research with Mendeley

Sign up for free