Antidisialoganglioside/granulocyte macrophage-colony-stimulating factor fusion protein facilitates neutrophil antibody-dependent cellular cytotoxicity and depends on FcγRII (CD32) and Mac-1 (CD11b/CD18) for enhanced effector cell adhesion and azurophil granule exocytosis

71Citations
Citations of this article
40Readers
Mendeley users who have this article in their library.

This article is free to access.

Abstract

Polymorphonuclear leukocytes (PMNs) mediate antibody-dependent cellular cytotoxicity (ADCC), which is increased by the addition of granulocyte-macrophage colony-stimulating factor (GM-CSF). We sought to determine whether PMN ADCC also would be increased by the addition of an antibody/GM-CSF fusion protein and whether this would be associated with the up-regulation and activation of Mac-1 (CD11b/CD18) and with azurophil granule exocytosis. ADCC against LA-N-1 human neuroblastoma cells was evaluated with 4-hour calcein acetoxymethyl ester (calcein-AM) microcytotoxicity assay, electron microscopy, and multiparameter flow cytometry. With the calcein-AM assay, LA-N-1 cell survival was 10%, 55%, and 75% when PMN ADCC was mediated by the antidisialoganglioside (anti-GD2) immunocytokine hu14.18/GM-CSF, by monoclonal antibody (mAb) hu14.18 mixed with GM-CSF, and by hu14.18 alone. Function-blocking mAbs demonstrated that FcγRII and FcγRIII were required for ADCC with hu14.18 alone or mixed with GM-CSF, but that only FcγRII was required for ADCC with hu14.18/GM-CSF. ADCC mediated by hu14.18 and hu14.18/GM-CSF was Mac-1 dependent. Electron microscopy demonstrated the greatest PMN adhesion, spreading, and lysis of targets with hu14.18/GM-CSF. Monoclonal antibodies blocking Mac-1 function allowed the tethering of PMN to targets with hu14.18/GM-CSF but prevented adhesion, spreading, and cytolysis. Flow cytometry showed that hu14.18 with or without GM-CSF and hu14.18/GM-CSF all mediated Mac-1-dependent PMN-target cell conjugate formation but that GM-CSF was required for the highest expression and activation of Mac-1, as evidenced by the mAb24-defined β2-integrin activation epitope. Hu14.18/GM-CSF induced the highest sustained azurophil granule exocytosis, almost exclusively in PMNs with activated Mac-1. Thus, hu14,18/GM-CSF facilitates PMN ADCC against neuroblastoma cells associated with FcγRII and Mac-1-dependent enhanced adhesion and degranulation. © 2002 by The American Society of Hematology.

Cite

CITATION STYLE

APA

Metelitsa, L. S., Gillies, S. D., Super, M., Shimada, H., Reynolds, C. P., & Seeger, R. C. (2002). Antidisialoganglioside/granulocyte macrophage-colony-stimulating factor fusion protein facilitates neutrophil antibody-dependent cellular cytotoxicity and depends on FcγRII (CD32) and Mac-1 (CD11b/CD18) for enhanced effector cell adhesion and azurophil granule exocytosis. Blood, 99(11), 4166–4173. https://doi.org/10.1182/blood.V99.11.4166

Register to see more suggestions

Mendeley helps you to discover research relevant for your work.

Already have an account?

Save time finding and organizing research with Mendeley

Sign up for free