The beginnings of hydrous mantle wedge melting

156Citations
Citations of this article
190Readers
Mendeley users who have this article in their library.
Get full text

Abstract

This study presents new phase equilibrium data on primitive mantle peridotite (0.33 wt% Na 2O, 0.03 wt% K 2O) in the presence of excess H 2O (14.5 wt% H 2O) from 740 to 1,200°C at 3.2-6 GPa. Based on textural and chemical evidence, we find that the H 2O-saturated peridotite solidus remains isothermal between 800 and 820°C at 3-6 GPa. We identify both quenched solute from the H 2O-rich fluid phase and quenched silicate melt in supersolidus experiments. Chlorite is stable on and above the H 2O-saturated solidus from 2 to 3.6 GPa, and chlorite peridotite melting experiments (containing ~6 wt% chlorite) show that melting occurs at the chlorite-out boundary over this pressure range, which is within 20°C of the H 2O-saturated melting curve. Chlorite can therefore provide sufficient H 2O upon breakdown to trigger dehydration melting in the mantle wedge or perpetuate ongoing H 2O-saturated melting. Constraints from recent geodynamic models of hot subduction zones like Cascadia suggest that significantly more H 2O is fluxed from the subducting slab near 100 km depth than can be bound in a layer of chloritized peridotite ~ 1 km thick at the base of the mantle wedge. Therefore, the dehydration of serpentinized mantle in the subducted lithosphere supplies free H 2O to trigger melting at the H 2O-saturated solidus in the lowermost mantle wedge. Alternatively, in cool subduction zones like the Northern Marianas, a layer of chloritized peridotite up to 1.5 km thick could contain all the H 2O fluxed from the slab every million years near 100 km depth, which suggests that the dominant form of melting below arcs in cool subduction zones is chlorite dehydration melting. Slab P-T paths from recent geodynamic models also allow for melts of subducted sediment, oceanic crust, and/or sediment diapirs to interact with hydrous mantle melts within the mantle wedge at intermediate to hot subduction zones. © 2011 Springer-Verlag.

Cite

CITATION STYLE

APA

Till, C. B., Grove, T. L., & Withers, A. C. (2012). The beginnings of hydrous mantle wedge melting. Contributions to Mineralogy and Petrology, 163(4), 669–688. https://doi.org/10.1007/s00410-011-0692-6

Register to see more suggestions

Mendeley helps you to discover research relevant for your work.

Already have an account?

Save time finding and organizing research with Mendeley

Sign up for free