α-MnO2 has been recognized as a potential material for supercapacitor applications because of its abundance, cost-effectiveness, environmental-benign nature and high theoretical specific capacitance (Csp) of 1370 F g-1. In this study, we succeeded for the first time to achieve the theoretical Csp with 3D multi-walled carbon nanotubes (MWCNTs) horizontally dispersed on 2D graphene oxide (GO) nanosheet framework-supported MnO2 ternary nanocomposites synthesized by a simple precipitation method. The in situ formation of α-MnO2 and GO, and the growth of 3D MWCNT/GO framework took place simultaneously in a strong acidic suspension containing functionalized-MWCNTs, graphite, NaNO3 and KMnO4. Characterizations of the composites synthesized by varying % wt MWCNTs were performed with state-of-the-art techniques. These composites were characterized to be semi-crystalline and mesoporous in nature, and the scrupulous analyses of field emission scanning electron microscopic images showed MnO2 nano-flower distributed over 3D MWCNTs dispersed-on-GO-nanosheet frameworks. These composites deposited on a graphite electrode exhibited an ideal supercapacitive behavior in an Na2SO4 solution measured via cyclic voltammetry and chronopotentiometry. Optimum contents of MnO2 and MWCNTs in the composites showed a maximum Csp of 1380 F g-1 with satisfactory energy and power densities compared in the Ragone plot. An ascending trend of Csp against the charge-discharge cycle number studied for 700 cycles was noticed. Well-dispersion of α-MnO2 nanoparticles throughout 3D MWCNTs covalently-anchored to the GO nanosheet framework is discussed to aid in achieving the frontier Csp of MnO2. This journal is
Mendeley helps you to discover research relevant for your work.
CITATION STYLE
Islam, M. M., Mollah, M. Y. A., Susan, M. A. B. H., & Islam, M. M. (2020). Frontier performance of: In situ formed α-MnO2dispersed over functionalized multi-walled carbon nanotubes covalently anchored to a graphene oxide nanosheet framework as supercapacitor materials. RSC Advances, 10(73), 44884–44891. https://doi.org/10.1039/d0ra08772f