The effect of in-situ precipitating particles on the grain size of Al-Ti-treated and untreated Hadfield steel cast in a pilot scale environment was studied. Hadfield steel was melted in an induction furnace and cast in Y-Block samples. Light Optical Microscopy (LOM) and the intercept method were utilized for the grain size measurements. Additionally, Thermo-Calc Software TCFE7 Steels/Fe-alloys database version 7 was used for thermodynamic equilibrium calculations of the mole fraction of particles. The planar disregistry values between the austenite and the precipitating particles were calculated. It was observed that increasing oxide content in samples with low Ti(CN) content resulted in a finer microstructure, while increasing the Ti(CN) content under similar oxide content levels led to a coarser microstructure. The potency of each type of particle to nucleate austenitic grains was determined. Spinel (MnAl2O4, MgAl2O4) particles were characterized as the most potent, followed by olivine (Mn2SiO4), corundum (Al2O3, TiO2), and finally Ti(CN), the least potent particle.
CITATION STYLE
Siafakas, D., Matsushita, T., Lauenstein, Å., Ekengård, J., & Jarfors, A. E. W. (2017). The influence of deoxidation practice on the as-cast grain size of austenitic manganese steels. Metals, 7(6). https://doi.org/10.3390/met7060186
Mendeley helps you to discover research relevant for your work.