The two-point force-velocity model allows the assessment of the muscle mechanical capacities in fast, almost fatigue-free conditions. The aim of this study was to investigate the concurrent validity of the two-point parameters with directly measured force and power and to examine the generalization of the two-point parameters across the different functional movement tests of leg muscles. Twelve physically active participants were tested performing three functional lower limb maximal tests under two different magnitudes of loads: countermovement jumps, maximal cycling sprint, and maximal force under isokinetic conditions of the knee extensors. The results showed that all values from the two-point model were higher than the values from the standard tests (p < 0.05). We also found strong correlations between the same variables from different tests (r = 0.84; p < 0.01), except for force in maximal cycling sprint, where it was low and negligible (r = -0.24). The results regarding our second aim showed that the correlation coefficients between the same two-point parameters of different lower limb tests ranged from moderate to strong (r -0.47 to 0.72). In particular, the relationships were stronger between power variables than between force variables and somewhat stronger between standard tests and two-point parameters. We can conclude that mechanical capacities of the leg muscles can be partially generalized between different functional tests.
CITATION STYLE
Durić, S., Grbić, V., Živković, M., Majstorović, N., & Sember, V. (2021). Are the parameters of novel two-point force-velocity model generalizable in leg muscles? International Journal of Environmental Research and Public Health, 18(3), 1–11. https://doi.org/10.3390/ijerph18031032
Mendeley helps you to discover research relevant for your work.