Individual migratory patterns of two threatened seabirds revealed using stable isotope and geolocation analyses

19Citations
Citations of this article
114Readers
Mendeley users who have this article in their library.

This article is free to access.

Abstract

Aim: Intraspecific variability in the migratory movements of seabirds is being revealed far more complex than hitherto recognized, and our lack of understanding undermines their effective protection. Our aim is to test whether the isotopic values of a single feather of two threatened seabirds, the Mediterranean (Puffinus yelkouan) and the Balearic (Puffinus mauretanicus) shearwaters allow the geographic assignment of birds to their non-breeding areas. Location: These two species are known to use three main non-breeding areas: the NE Atlantic Ocean, the W Mediterranean and the Aegean-Black seas. Methods: We clustered in three groups the δ13C and δ15N values of the first primary feather (P1), inferred to be grown during the non-breeding period, of 34 Mediterranean and 56 Balearic shearwaters accidentally caught by longliners. To link the isotopic values of P1 to its corresponding non-breeding area, we performed a discriminant function analysis (DFA) based on the three clusters and applied this function to feathers of known origin: P1 from seven Mediterranean shearwaters from Hyères Archipelago (France) tracked with geolocators and body feathers from six chicks from Balearic shearwaters. To link the moulting patterns to the areas where the feathers were grown, we applied the DFA to a sequence of primary feathers of eight Balearic and five Mediterranean shearwaters (caught by longliners). Results: Isotopic and tracking data indicate that none of the Mediterranean shearwaters migrated to the Atlantic. The cluster and discriminant function analyses revealed that 8% of Balearic and 54% of Mediterranean shearwater moulted P1 in the Mediterranean Sea. Migratory movements were reflected in the changing isotopic values of the primary sequences. Main conclusions: Stable isotope analyses (SIA) are a powerful approach to reveal the intraspecific variability in the migratory patterns of seabirds that use distinct isotopic areas over their annual cycle. The assignment of birds to their non-breeding areas by means of SIA is a simple and effective tool that can help to evaluate the impact of human activities in remote areas not only at population but also at individual level, which is an essential knowledge for the management and conservation of threatened species. © 2012 Blackwell Publishing Ltd.

Cite

CITATION STYLE

APA

Militão, T., Bourgeois, K., Roscales, J. L., & González-Solís, J. (2013). Individual migratory patterns of two threatened seabirds revealed using stable isotope and geolocation analyses. Diversity and Distributions, 19(3), 317–329. https://doi.org/10.1111/j.1472-4642.2012.00916.x

Register to see more suggestions

Mendeley helps you to discover research relevant for your work.

Already have an account?

Save time finding and organizing research with Mendeley

Sign up for free