A new method for immobilization of his-tagged proteins with the application of low-frequency AC electric field

6Citations
Citations of this article
21Readers
Mendeley users who have this article in their library.

Abstract

Continued advancement of protein array, bioelectrode, and biosensor technologies is necessary to develop methods for higher amount and highly oriented immobilization activity of proteins. In pursuit of these goals, we developed a new immobilization method by combining electrostatic transport and subsequent molecular diffusion of protein molecules. Our developed immobilization method is based on a model that transports proteins toward the substrate surface due to steep concentration gradient generated by low-frequency AC electric field. The immobilization of the maximum amounts can be obtained by the application of the AC voltage of 80 Vpp, 20 Hz both for His-tagged Green Fluorescent Protein (GFP) and Discosoma sp. Red Fluorescent Protein (DsRed), used as model proteins. The amounts of the immobilized His-tagged GFP and DsRed were approximately seven-fold higher than that in the absence of the application of low-frequency AC electric field. Furthermore, the positively and negatively charged His-tagged GFP at acidic and alkaline pH were immobilized by applying of low-frequency AC electric field, whereas the non-charged His-tagged GFP at the pH corresponding to its isoelectric point (pI) was not immobilized. Therefore, unless the pH is equal to pI, the immobilization of electrically charged proteins was strongly enhanced through electrostatic transport and subsequent molecular diffusion.

Cite

CITATION STYLE

APA

Takahashi, S., Kishi, K., Hiraga, R., Hayashi, K., Mamada, Y., Oshige, M., & Katsura, S. (2018). A new method for immobilization of his-tagged proteins with the application of low-frequency AC electric field. Sensors (Switzerland), 18(3). https://doi.org/10.3390/s18030784

Register to see more suggestions

Mendeley helps you to discover research relevant for your work.

Already have an account?

Save time finding and organizing research with Mendeley

Sign up for free