A major impediment to the transition to context-aware machine translation is the absence of good evaluation metrics and test sets. Sentences that require context to be translated correctly are rare in test sets, reducing the utility of standard corpus-level metrics such as COMET or BLEU. On the other hand, datasets that annotate such sentences are also rare, small in scale, and available for only a few languages. To address this, we modernize, generalize, and extend previous annotation pipelines to produce CTXPRO, a tool that identifies subsets of parallel documents containing sentences that require context to correctly translate five phenomena: gender, formality, and animacy for pronouns, verb phrase ellipsis, and ambiguous noun inflections. The input to the pipeline is a set of handcrafted, per-language, linguistically-informed rules that select contextual sentence pairs using coreference, part-of-speech, and morphological features provided by state-of-the-art tools. We apply this pipeline to seven languages pairs (EN into and out-of DE, ES, FR, IT, PL, PT, and RU) and two datasets (OpenSubtitles and WMT test sets), and validate its performance using both overlap with previous work and its ability to discriminate a contextual MT system from a sentence-based one. We release the CTXPRO pipeline and data as open source.
CITATION STYLE
Wicks, R., & Post, M. (2023). Identifying Context-Dependent Translations for Evaluation Set Production. In Conference on Machine Translation - Proceedings (pp. 390–405). Association for Computational Linguistics. https://doi.org/10.18653/v1/2023.wmt-1.42
Mendeley helps you to discover research relevant for your work.