As technology advances toward ongoing circuit miniaturization and device size reduction followed by improved power density, heat dissipation is becoming a key challenge for electronic equipment. Heat accumulation can be prevented if the heat from electrical equipment is efficiently exported, ensuring a device’s lifespan and dependability and preventing otherwise possible mishaps or even explosions. Hence, thermal management applications, which include altering the role of aerogels from thermally insulative to thermally conductive, have recently been a hot topic for 3D-aerogel-based thermal interface materials. To completely comprehend three-dimensional (3D) networks, we categorized and comparatively analyzed aerogels based on carbon nanomaterials, namely fibers, nanotubes, graphene, and graphene oxide, which have capabilities that may be fused with boron nitride and impregnated for better thermal performance and mechanical stability by polymers, including epoxy, cellulose, and polydimethylsiloxane (PDMS). An alternative route is presented in the comparative analysis by carbonized cellulose. As a result, the development of structurally robust and stiff thermally conductive aerogels for electronic packaging has been predicted to increase polymer thermal management capabilities. The latest trends include the self-organization of an anisotropic structure on several hierarchical levels within a 3D framework. In this study, we highlight and analyze the recent advances in 3D-structured thermally conductive aerogels, their potential impact on the next generation of electronic components based on advanced nanocomposites, and their future prospects.
CITATION STYLE
Owais, M., Shiverskii, A., Pal, A. K., Mahato, B., & Abaimov, S. G. (2022, November 1). Recent Studies on Thermally Conductive 3D Aerogels/Foams with the Segregated Nanofiller Framework. Polymers. MDPI. https://doi.org/10.3390/polym14224796
Mendeley helps you to discover research relevant for your work.