Graphene oxide (GO) membranes are emerging for water treatment. Meanwhile, challenges remain due to membrane fouling and their instability in aqueous solutions. Herein, a novel GO-based mixed-dimensional membrane with superior antifouling and nonswelling properties was prepared by assembling two-dimensional (2D) GO nanosheets and zero-dimensional (0D) copper(I) oxide-incorporated titanium dioxide photocatalyst (CT). The decoration of CT in GO nanosheets tuned the microstructure and surface hydrophilicity while creating more transport channels in CT/GO membranes. This resulted in a high water permeance of 171.5 L m-2 h-1 bar-1 and improved selectivity to various dye molecules (96.2-98.6%). Due to the significantly enhanced antibacterial properties of the CT nanoparticles, the growth of bacteria on the surface of the CT/GO membrane was suppressed (threefold less than that on the GO membrane). Moreover, the embedding of photocatalysts also allowed CT/GO membranes to exhibit ∼9-fold improvement in antibacterial activity and organic dye degradation performance under visible-light irradiation. This study offers a powerful solution to enhance the nanofiltration performance and antibacterial properties of GO membranes toward practical applications.
CITATION STYLE
Wu, X., Zhang, J., Wang, H., Huo, Y., & Xie, Z. (2023). Construction of 2D/0D Graphene Oxide/Copper(I) Oxide-Incorporated Titanium Dioxide Mixed-Dimensional Membranes with Ultrafast Water Transport and Enhanced Antifouling Properties. ACS Applied Materials and Interfaces, 15(26), 31561–31571. https://doi.org/10.1021/acsami.3c06103
Mendeley helps you to discover research relevant for your work.