Studies of H13 steel suggest that under appropriate conditions, additions of rare-earth metals (REM) can significantly enhance mechanical properties, such as impact toughness. This improvement is apparently due to the formation of finer and more dispersive RE inclusions and grain refinement after REM additions. In this present work, the microstructure evolution and mechanical properties of H13 steel with rare earth additions (0, 0.015, 0.025 and 0.1 wt.%) were investigated. The grain size, inclusions and fracture morphology were systematically studied by means of optical microscopy (OM), scanning electron microscopy (SEM) and transmission electron microscopy (TEM). The results indicate that REM addition of 0.015 wt.% can result in good improvement of performance compared to the REM additions of 0.025 wt.% and 0.1 wt.%. It is found that the impact toughness is significantly enhanced with the addition of 0.015% REM, which can be improved 90% from 10 J to 19 J. Such an addition of REM can result in a huge volume fraction of finer and more dispersive inclusions which are extremely good to toughness.
CITATION STYLE
Gao, J., Fu, P., Liu, H., & Li, D. (2015). Effects of rare earth on the microstructure and impact toughness of H13 steel. Metals, 5(1), 383–394. https://doi.org/10.3390/met5010383
Mendeley helps you to discover research relevant for your work.