Prediction of Drought-Induced Components and Evaluation of Drought Damage of Tea Plants Based on Hyperspectral Imaging

25Citations
Citations of this article
41Readers
Mendeley users who have this article in their library.
Get full text

Abstract

Effective evaluation of physiological and biochemical indexes and drought degree of tea plant is an important technology to determine the drought resistance ability of tea plants. At present, the traditional detection method of tea drought stress is mainly based on physiological and biochemical detection, which is not only destructive to tea plants, but also time-consuming and laborious. In this study, through simulating drought treatment of tea plant, hyperspectral camera was used to obtain spectral data of tea leaves, and three machine learning models, namely, support vector machine (SVM), random forest (RF), and partial least-squares (PLS) regression, were used to model malondialdehyde (MDA), electrolyte leakage (EL), maximum efficiency of photosystem II (Fv/Fm), soluble saccharide (SS), and drought damage degree (DDD) of tea leaves. The results showed that the competitive adaptive reweighted sampling (CARS)-PLS model of MDA had the best effect among the four physiological and biochemical indexes (Rcal = 0.96, Rp = 0.92, RPD = 3.51). Uninformative variable elimination (UVE)-SVM model was the best in DDD (Rcal = 0.97, Rp = 0.95, RPD = 4.28). Therefore, through the establishment of machine learning model using hyperspectral imaging technology, we can monitor the drought degree of tea seedlings under drought stress. This method is not only non-destructive, but also fast and accurate, which is expected to be widely used in tea garden water regime monitoring.

References Powered by Scopus

Chlorophyll fluorescence - A practical guide

7652Citations
N/AReaders
Get full text

The successive projections algorithm for variable selection in spectroscopic multicomponent analysis

1201Citations
N/AReaders
Get full text

Partial least squares regression as an alternative to current regression methods used in ecology

611Citations
N/AReaders
Get full text

Cited by Powered by Scopus

Proximal hyperspectral sensing of abiotic stresses in plants

44Citations
N/AReaders
Get full text

Prediction of Tea Polyphenols, Free Amino Acids and Caffeine Content in Tea Leaves during Wilting and Fermentation Using Hyperspectral Imaging

34Citations
N/AReaders
Get full text

Low temperature response index for monitoring freezing injury of tea plant

25Citations
N/AReaders
Get full text

Register to see more suggestions

Mendeley helps you to discover research relevant for your work.

Already have an account?

Cite

CITATION STYLE

APA

Chen, S., Gao, Y., Fan, K., Shi, Y., Luo, D., Shen, J., … Wang, Y. (2021). Prediction of Drought-Induced Components and Evaluation of Drought Damage of Tea Plants Based on Hyperspectral Imaging. Frontiers in Plant Science, 12. https://doi.org/10.3389/fpls.2021.695102

Readers' Seniority

Tooltip

PhD / Post grad / Masters / Doc 12

67%

Researcher 4

22%

Lecturer / Post doc 2

11%

Readers' Discipline

Tooltip

Agricultural and Biological Sciences 11

69%

Computer Science 3

19%

Engineering 1

6%

Environmental Science 1

6%

Save time finding and organizing research with Mendeley

Sign up for free