A GO (graphene oxide)/ZnO/Cu2O antibacterial coating was successfully sprayed on the ultrafine glass fibers using room temperature hydrothermal synthesis and air spraying techniques. The microstructures of the antibacterial coating were characterized, and the results showed that the Cu2ONPs (nano particles)/ZnONPs were uniformly dispersed on the surface of GO. Then, the an-tibacterial properties of the GO/ZnO/Cu2O (GZC) antibacterial coating were evaluated using the disc diffusion test. It was found that the coating exhibits excellent antibacterial properties and stability against E. coli and S. aureus, and the antibacterial rate of each group of antibacterial powder against Staphylococcus aureus (S. aureus) and Escherichia coli (E. coli) was 100%. To explore the antibacterial mechanism of the GZC antibacterial powder on the ultrafine glass fibers based on the photocatalysis/oxidative stress method, the photoelectric coupling synergistic effect between GZC antibacterial coating was analyzed deeply. The results all showed that the photochemical activity of GZC antibacterial powder was significantly improved compared with pure component materi-als. The enhancement of its photochemical activity is beneficial to the generation of ROS (including hydroxyl radicals, superoxide anion radicals, etc.), which further confirms the speculation of the photocatalytic/oxidative stress mechanism.
Mendeley helps you to discover research relevant for your work.
CITATION STYLE
Li, M., Chen, Z., Yang, L., Li, J., Xu, J., Chen, C., … Liu, T. (2022). Antibacterial Activity and Mechanism of GO/Cu2O/ZnO Coating on Ultrafine Glass Fiber. Nanomaterials, 12(11). https://doi.org/10.3390/nano12111857