The esophageal epithelium is subject to damage from bile acid reflux that promotes normal tissue injury resulting in the development of Barrett's epithelium. There is a selection pressure for mutating p53 in this preneoplastic epithelium, thus identifying a physiologically relevant model for discovering novel regulators of the p53 pathway. Proteomic technologies were used to identify such p53 regulatory factors by identifying proteins that were overexpressed in Barrett's epithelium. A very abundant polypeptide selectively expressed in Barrett's epithelium was identified as anterior gradient-2. Immunochemical methods confirmed that anterior gradient-2 is universally up-regulated in Barrett's epithelium, relative to normal squamous tissue derived from the same patient. Transfection of the anterior gradient-2 gene into cells enhances colony formation, similar to mutant oncogenic p53 encoded by the HIS175 allele, suggesting that anterior gradient-2 can function as a survival factor. Deletion of the C-terminal 10 amino acids of anterior gradient-2 neutralizes the colony enhancing activity of the gene, suggesting a key role for this domain in enhancing cell survival. Constitutive overexpression of anterior gradient-2 does not alter cell-cycle parameters in unstressed cells, suggesting that this gene is not directly modifying the cell cycle. However, cells overexpressing anterior gradient-2 attenuate p53 phosphorylation at both Ser15 and Ser392 and silence p53 transactivation function in ultraviolet (UV)-damaged cells. Deletion of the C-terminal 10 amino acids of anterior gradient-2 permits phosphorylation at Ser15 in UV-damaged cells, suggesting that the C-terminal motif promoting colony survival also contributes to suppression of the Ser15 kinase pathway. These data identify anterior gradient-2 as a novel survival factor whose study may shed light on cellular pathways that attenuate the tumor suppressor p53. © 2004 by The American Society for Biochemistry and Molecular Biology, Inc.
CITATION STYLE
Pohler, E., Craig, A. L., Cotton, J., Lawrie, L., Dillon, J. F., Ross, P., … Hupp, T. R. (2004). The Barrett’s antigen anterior gradient-2 silences the p53 transcriptional response to DNA damage. Molecular and Cellular Proteomics, 3(6), 534–547. https://doi.org/10.1074/mcp.M300089-MCP200
Mendeley helps you to discover research relevant for your work.