Disruption of calcium transfer from ER to mitochondria links alterations of mitochondria-associated ER membrane integrity to hepatic insulin resistance

120Citations
Citations of this article
65Readers
Mendeley users who have this article in their library.

This article is free to access.

Abstract

Aims/hypothesis: Mitochondria-associated endoplasmic reticulum membranes (MAMs) are regions of the endoplasmic reticulum (ER) tethered to mitochondria and controlling calcium (Ca2+) transfer between both organelles through the complex formed between the voltage-dependent anion channel, glucose-regulated protein 75 and inositol 1,4,5-triphosphate receptor (IP3R). We recently identified cyclophilin D (CYPD) as a new partner of this complex and demonstrated a new role for MAMs in the control of insulin’s action in the liver. Here, we report on the mechanisms by which disruption of MAM integrity induces hepatic insulin resistance in CypD (also known as Ppif)-knockout (KO) mice. Methods: We used either in vitro pharmacological and genetic inhibition of CYPD in HuH7 cells or in vivo loss of CYPD in mice to investigate ER–mitochondria interactions, inter-organelle Ca2+ exchange, organelle homeostasis and insulin action. Results: Pharmacological and genetic inhibition of CYPD concomitantly reduced ER–mitochondria interactions, inhibited inter-organelle Ca2+ exchange, induced ER stress and altered insulin signalling in HuH7 cells. In addition, histamine-stimulated Ca2+ transfer from ER to mitochondria was blunted in isolated hepatocytes of CypD-KO mice and this was associated with an increase in ER calcium store. Interestingly, disruption of inter-organelle Ca2+ transfer was associated with ER stress, mitochondrial dysfunction, lipid accumulation, activation of c-Jun N-terminal kinase (JNK) and protein kinase C (PKC)ε and insulin resistance in liver of CypD-KO mice. Finally, CYPD-related alterations of insulin signalling were mediated by activation of PKCε rather than JNK in HuH7 cells. Conclusions/interpretation: Disruption of IP3R-mediated Ca2+ signalling in the liver of CypD-KO mice leads to hepatic insulin resistance through disruption of organelle interaction and function, increase in lipid accumulation and activation of PKCε. Modulation of ER–mitochondria Ca2+ exchange may thus provide an exciting new avenue for treating hepatic insulin resistance.

Cite

CITATION STYLE

APA

Rieusset, J., Fauconnier, J., Paillard, M., Belaidi, E., Tubbs, E., Chauvin, M. A., … Ovize, M. (2016). Disruption of calcium transfer from ER to mitochondria links alterations of mitochondria-associated ER membrane integrity to hepatic insulin resistance. Diabetologia, 59(3), 614–623. https://doi.org/10.1007/s00125-015-3829-8

Register to see more suggestions

Mendeley helps you to discover research relevant for your work.

Already have an account?

Save time finding and organizing research with Mendeley

Sign up for free