Privacy-preserving biometric-based remote user authentication with leakage resilience

2Citations
Citations of this article
3Readers
Mendeley users who have this article in their library.
Get full text

Abstract

Biometric-based remote user authentication is a useful primitive that allows an authorized user to authenticate to a remote server using his biometrics. Leakage attacks, such as side-channel attacks, allow an attacker to learn partial knowledge of secrets (e.g., biometrics) stored on any physical medium. Leakage attacks can be potentially launched to any existing biometric-based remote user authentication systems. Furthermore, applying plain biometrics is an efficient and straightforward approach when designing remote user authentication schemes. However, this approach jeopardises user’s biometrics privacy. To address these issues, we propose a novel leakage-resilient and privacy-preserving biometric-based remote user authentication framework, such that registered users securely and privately authenticate to an honest-but-curious remote server in the cloud. In particular, the proposed generic framework provides optimal efficiency using lightweight symmetric-key cryptography, and it remains secure under leakage attacks. We formalize several new security models, including leakage-resilient user authenticity and leakage-resilient biometrics privacy, for biometric-based remote user authentication, and prove the security of proposed framework under standard assumptions.

Cite

CITATION STYLE

APA

Tian, Y., Li, Y., Chen, R., Li, N., Liu, X., Chang, B., & Yu, X. (2018). Privacy-preserving biometric-based remote user authentication with leakage resilience. In Lecture Notes of the Institute for Computer Sciences, Social-Informatics and Telecommunications Engineering, LNICST (Vol. 254, pp. 112–132). Springer Verlag. https://doi.org/10.1007/978-3-030-01701-9_7

Register to see more suggestions

Mendeley helps you to discover research relevant for your work.

Already have an account?

Save time finding and organizing research with Mendeley

Sign up for free