Information extraction over structured data: Question answering with freebase

397Citations
Citations of this article
397Readers
Mendeley users who have this article in their library.

Abstract

Answering natural language questions using the Freebase knowledge base has recently been explored as a platform for advancing the state of the art in open domain semantic parsing. Those efforts map questions to sophisticated meaning representations that are then attempted to be matched against viable answer candidates in the knowledge base. Here we show that relatively modest information extraction techniques, when paired with a webscale corpus, can outperform these sophisticated approaches by roughly 34% relative gain. © 2014 Association for Computational Linguistics.

Cite

CITATION STYLE

APA

Yao, X., & Van Durme, B. (2014). Information extraction over structured data: Question answering with freebase. In 52nd Annual Meeting of the Association for Computational Linguistics, ACL 2014 - Proceedings of the Conference (Vol. 1, pp. 956–966). Association for Computational Linguistics (ACL). https://doi.org/10.3115/v1/p14-1090

Register to see more suggestions

Mendeley helps you to discover research relevant for your work.

Already have an account?

Save time finding and organizing research with Mendeley

Sign up for free