Transcriptional homeostasis of a mangrove species, ceriops tagal, in saline environments, as revealed by microarray analysis

18Citations
Citations of this article
52Readers
Mendeley users who have this article in their library.

Abstract

Background: Differential responses to the environmental stresses at the level of transcription play a critical role in adaptation. Mangrove species compose a dominant community in intertidal zones and form dense forests at the sea-land interface, and although the anatomical and physiological features associated with their cngs: We report the time-course transcript profiles in the roots of a true mangrove species, Ceriops tagal, as revealed by a series of microarray experiments. The expression of a total of 432 transcripts changed significantly in the roots of C. tagal under salt shock, of which 83 had a more than 2-fold change and were further assembled into 59 unigenes. Global transcription was stable at the early stage of salt stress and then was gradually dysregulated with the increased duration of the stress. Importantly, a pair-wise comparison of predicted homologous gene pairs revealed that the transcriptional regulations of most of the differentially expressed genes were highly divergent in C. tagal from that in salt-sensitive species, Arabidopsis thaliana. Conclusions/Significance: This work suggests that transcriptional homeostasis and specific transcriptional regulation are major events in the roots of C. tagal when subjected to salt shock, which could contribute to the establishment of adaptation to saline environments and, thus, facilitate the salt-tolerant lifestyle of this mangrove species. Furthermore, the candidate genes underlying the adaptation were identified through comparative analyses. This study provides a foundation for dissecting the genetic basis of the adaptation of mangroves to intertidal environments. © 2012 Liang et al.

Cite

CITATION STYLE

APA

Liang, S., Fang, L., Zhou, R., Tang, T., Deng, S., Dong, S., … Shi, S. (2012). Transcriptional homeostasis of a mangrove species, ceriops tagal, in saline environments, as revealed by microarray analysis. PLoS ONE, 7(5). https://doi.org/10.1371/journal.pone.0036499

Register to see more suggestions

Mendeley helps you to discover research relevant for your work.

Already have an account?

Save time finding and organizing research with Mendeley

Sign up for free