Poly (lactic acid) or polylactide (PLA) has gained widespread use in many industries and has become a commodity polymer. Its potential as a perfect replacement for petrochemically made plastics has been constrained by its extreme flammability and propensity to flow in a fire. Traditional flame-retardants (FRs), such as organo-halogen chemicals, can be added to PLA without significantly affecting the material’s mechanical properties. However, the restricted usage of these substances causes them to bioaccumulate and endanger plants and animals. Research on PLA flame-retardants has mostly concentrated on organic and inorganic substances for the past few years. Meanwhile, there has been a significant increase in renewed interest in creating environmentally acceptable flame-retardants for PLA to maintain the integrity of the polymer, which is the current trend. This article reviews recent advancements in novel FRs for PLA. The emphasis is on two-dimensional (2D) nanosystems and the composites made from them that have been used to develop PLA nanocomposite (NCP) systems that are flame retarding. The association between FR loadings and efficiency for different FR-PLA systems is also briefly discussed in the paper, as well as their influence on processing and other material attributes. It is unmistakably established from the literature that adding 2D nanoparticles to PLA matrix systems reduces their flammability by forming an intumescent char/carbonized surface layer. This creates a barrier effect that successfully blocks the filtration of volatiles and oxygen, heat and mass transfer, and the release of combustible gases produced during combustion.
CITATION STYLE
Temane, L. T., Orasugh, J. T., & Ray, S. S. (2023, September 1). Recent Advances and Outlook in 2D Nanomaterial-Based Flame-Retardant PLA Materials. Materials. Multidisciplinary Digital Publishing Institute (MDPI). https://doi.org/10.3390/ma16176046
Mendeley helps you to discover research relevant for your work.