A neural surveyor to map touch on the body

10Citations
Citations of this article
27Readers
Mendeley users who have this article in their library.
Get full text

Abstract

Perhaps the most recognizable sensory map in all of neuroscience is the somatosensory homunculus. Although it seems straightforward, this simple representation belies the complex link between an activation in a somatotopic map and the associated touch location on the body. Any isolated activation is spatially ambiguous without a neural decoder that can read its position within the entire map, but how this is computed by neural networks is unknown. We propose that the somatosensory system implements multilateration, a common computation used by surveying and global positioning systems to localize objects. Specifically, to decode touch location on the body, multilateration estimates the relative distance between the afferent input and the boundaries of a body part (e.g., the joints of a limb). We show that a simple feedforward neural network, which captures several fundamental receptive field properties of cortical somatosensory neurons, can implement a Bayes-optimal multilateral computation. Simulations demonstrated that this decoder produced a pattern of localization variability between two boundaries that was unique to multilateration. Finally, we identify this computational signature of multilateration in actual psychophysical experiments, suggesting that it is a candidate computational mechanism underlying tactile localization.

Cite

CITATION STYLE

APA

Miller, L. E., Fabio, C., Azaroual, M., Muret, D., van Beers, R. J., Farne, A., & Pieter Medendorp, W. (2022). A neural surveyor to map touch on the body. Proceedings of the National Academy of Sciences of the United States of America, 119(1). https://doi.org/10.1073/pnas.2102233118

Register to see more suggestions

Mendeley helps you to discover research relevant for your work.

Already have an account?

Save time finding and organizing research with Mendeley

Sign up for free